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ABSTRACT 

 In the literature, the bounds of the peak to average power ratio (PAPR) are generalized to both complex-valued 
and real-valued orthogonal frequency division multiplexing (OFDM) signals. In fact, these bounds are 
accurately bounding the PAPR distribution of complex-valued OFDM signals only.  
   In this paper, we derive accurate PAPR bounds of real-valued OFDM signals and show that bounds of 
complex-valued OFDM signals cannot be generalized to the real-valued OFDM signals. Our analysis is based on 
the fact that a real-valued OFDM signal consists of a single random variable. Also a relation between the PAPR 
and number of subcarriers is established for both real-valued and complex-valued OFDM signals 
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1.  Introduction 
 

Real-valued OFDM is used in high-speed modems 
for Digital Subscriber Line (DSL) applications [1]. 
The main drawback of OFDM signals is the high 
peak-to-average power ratio (PAPR), which could 
cause serious performance degradation in the 
presence of nonlinear power amplification. In 
literature, many techniques have been proposed to 
reduce PAPR [10 & reference therein] [11 & 12] 
and many approaches have been taken to analyze 
the distribution of PAPR [4-6] [13 & 14]. In this 
paper, we derive accurate and simple PAPR bounds 
of real-valued OFDM signals. Our analysis is based 
on the fact that a real-valued OFDM signal consists 
of a single random variable. Also we establish a 
relation between the PAPR and number of 
subcarriers for both real-valued and complex-
valued OFDM signals. 
 
The continuous-time OFDM signal can be 
expressed as [3] 
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where BT  is the OFDM symbol interval, N is the 
number of subcarriers, kf  is the center frequency 
of kth subcarrier, and ,][ kk jbakS +=  is the 
complex data symbol sequence. The guard interval 
is ignored since it has no impact on the PAPR. 
Expressing )(ts  in terms of its real and imaginary 
parts yields 
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Therefore, the envelope of OFDM signal is 
 

)()()()( 22 tststste QI +==                                     

The peak of )(ts  is given by the maximum of its 
envelope )(te , )(maxPeak ],0[max tsBTt∈= . Thus, 
the peak power is the maximum peak of the 
instantaneous power 2)(ts is given by  
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and the average power of )(ts  is 
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Thus, the peak-to-average power ratio is 
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For N subcarriers with a unity power (e.g. 
subcarriers modulated with M-ary PSK, that 
is kj|ek|sks φ][][ = , 1|][| =ks ), the average power 
is 
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and the maximum instantaneous signal power is 

2N , which results when all subcarriers add 
coherently. So the PAPR can be as high as N, 
which is a theoretical maximum bound. If a 
multilevel constellation such as QAM is applied, 
this bound could be higher than N. However, the 
likelihood of all subcarriers to add coherently is 
extremely low. In [4], it was shown that for an 
OFDM system with 32 subcarriers, QPSK, and a 
symbol period of sTB μ100= , the theoretical 
bound will be observed statistically only once in 
3.7 million years. Therefore, it is better to describe 



the PAPR of OFDM signals in terms of its 
statistical distribution. But first, the PAPR of 
discrete-time OFDM signals is formulated.  
 

For the discrete-time OFDM signal, 
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Thus, its envelope is ][][][][ 22 nsnsnsne QI +==  

and hence, the PAPR of the discrete-time signal is 
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where }{⋅E  denotes the mathematical expectation. 
Most of the PAPR reduction schemes including 
consider the discrete-time signal, where digital 
signal processing can be applied. However, the 
PAPR of the discrete-time signal provides a lower 
bound to the continuous-time one since peaks can 
occur during sampling time.  
   In [5], [6], the relationship between peak of the 
continuous signal and maximum of its sampled 
sequence was addressed, and a new bound for the 
peak of the continuous envelope of OFDM signal 
was proposed based on the maximum of its 
oversampled sequence. It was shown that an 
oversampling with a rate 4≥L  is sufficient to 
tightly bound the peak of the continuous envelope. 
Thus, for an oversampling rate 4≥L , the PAPR of 
continuous-time signal can be approximated very 
well by one of the discrete-time signal. 
   Oversampling with a rate of L  can be achieved 
by inserting NL )1( −  zeros in the complex data 
sequence 10 ],[ −≤≤ NnkS  prior to the NL-IDFT. 
Thus, the size of the IDFT/DFT is NL. 
 
 

2.  Statistical Analysis of PAPR 
For a set of M complex symbols, there are NM  
unique symbol sequences [4] and hence, NM  
possible OFDM waveforms per OFDM symbol. 
Assuming that the data symbols 10 ],[ −≤≤ NnkS  
are statistically independent and identically 
distributed (i.i.d.) random variables (RVs), then, for 
a large number of subcarriers N, the central limit 
theorem [2] is applicable. Thus, for a large number 
of subcarriers N, real and imaginary parts of )(ts  
approach the Gaussian distribution with a zero-
mean and a common variance 2

sσ , with  PDF given 
by 
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Figure 1 shows the simulated PDFs of real and 
imaginary parts of a randomly generated discrete-
time OFDM signal with 64 subcarriers and 
oversampling rate 4=L , the theoretical reference 
in (5) is plotted also. This figure demonstrates the 
accuracy of the Gaussian approximation to the real 
and imaginary part of OFDM signal. 
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Figure 1: PDFs of complex-valued OFDM signal. 
 

 
Since the real and imaginary parts are well 
modeled by zero-mean Gaussian distribution for a 
large number of subcarriers, the instantaneous 
signal power has a central chi-square distribution 
with two degrees of freedom, with a  PDF given by  
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It follows that the corresponding Cumulative 
Distribution Function (CDF) is 
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Thus, the probability that the normalized 
instantaneous signal power 
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threshold op , is given by the complementary 
CDF (CCDF), i.e., 
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This CCDF is plotted in Figure 2 for different 
values of op .  
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Figure 2: CCDF of the normalized instantaneous 
OFDM signal power. 

 

    
As shown in Figure 2, large values of normalized 
instantaneous power have a very low probability to 
occur. However, since the PAPR depends on the 
signal envelope, it is better to consider the 
distribution of the OFDM signal envelope. Since 
the power has a central chi-square distribution with 
two degrees of freedom, the envelope is Rayleigh 
distributed with PDF given by 
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Figure 3: Simulated and theoretical envelope 
distributions of complex-valued OFDM signal. 

 
Figure 3 shows the simulated and theoretical 
envelope distributions of complex-valued OFDM 
signal, as it shown, the envelope of complex-valued 
OFDM signal is very well modeled by the Rayleigh 
distribution. The corresponding CDF is 

∫= −x u

s
X dueuxF s

0

2
2

22
)( σ

σ
0 ,1

22 2 ≥−= − xe sx σ (9) 

Thus, the probability that the PAPR = 
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threshold po for  N  subcarriers  is 
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The probability that the PAPR is above op , is 
given by  
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which plotted in Figure 4 as a function of op  for 
various numbers of subcarriers N. 
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Figure 4: CCDF of the PAPR of OFDM signal for 
various numbers of subcarriers. 
 
 For discrete-time OFDM signal, (11) is valid when 
the samples are assumed to be mutually 
uncorrelated, i.e., each discrete time sample after 
the IDFT can be treated as independent of all other 
samples [7]. This assumption is true for non-
oversampled OFDM signals [8]. An approximation 
to the PAPR distribution of oversampled signals 
was proposed in [9], by assuming that the 
distribution for N subcarriers with oversampling 
can be approximated by the distribution for Nα  

subcarriers without oversampling, that is 
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o
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with α larger than one, its value was determined 
by computer simulation to be 2.8. Thus, the effect 
of oversampling is approximated by adding a 
certain number of extra independent samples.  
   Figure 5 shows the simulated CCDF of complex-
valued OFDM signals with 64 subcarriers, 
oversampling rate 4=L , and DQPSK modulation. 
The CCDF was obtained by randomly generating 
more than 510  OFDM symbols at each value of 

op  and counting the number of symbols that their 
PAPR exceed this value, which is extremely a time 
consuming process. The approximation in (12) with 

8.2=α  is plotted along with the Theoretical 
reference in (11). As it shown, (12) accurately 
approximates the simulated distribution of 
oversampled signals. Simulation Results show that 
all generated symbols have a PAPR larger than 6 
dB and less than 12 dB, while a PAPR larger than 
11 dB occurred with a probability of 0.0004, i.e., 
only 40 symbols have a PAPR larger than 11 dB. 
   The CCDF of the PAPR is a useful metric to 
measure PAPR reduction capability (power 
efficiency) of various PAPR reduction schemes, 
since it provides a bound for the probability 
distribution of the PAPR. 
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Figure 5: CCDF of complex-valued DQPSK-
OFDM signal with 64 subcarriers and 
oversampling rate 4=L . 
 
    
3. Distribution of the PAPR of 
Real-Valued OFDM Signals 
In this Section, we derive accurate PAPR bounds of 
real-valued OFDM signals. Our analysis is based 
on the fact that a real-valued OFDM signal consists 
of a single random variable.  
The real-valued OFDM signal after the Digital-to-
Analog (D/A) converter can be expressed as 
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 If all subcarriers are modulated by M-ary PSK, 
then 1][ =kS . Therefore the signal average power 
is 
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and the maximum instantaneous signal power is 
24N , which results when all subcarriers add 

coherently. Therefore, the theoretical maximum 
bound of the PAPR of real-valued OFDM signals is 

,2N  which twice the theoretical bound of 
complex-valued OFDM signals and hence, one can 
conclude that real-valued signals in general exhibit 
higher PAPR than complex-valued signals. From 
the central limit theorem, for a large number of 
subcarriers, the real-valued signal )(ts  will 
approach the Gaussian distribution with a zero-
mean and variance 2

sσ , i.e., the signal is modeled 
as a real-valued Gaussian-distributed random 
variable. Therefore, its instantaneous power 

2|)(| tS  has a central-chi-square with one degree of 
freedom with a PDF given by 
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This implies that the signal envelope 2|)(| ts  has 
a one-sided Gaussian distribution with a PDF given 
by 
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Thus, the envelope distribution of real-valued 
OFDM signals follows the one-sided Gaussian 
distribution rather than the Rayleigh distribution. 
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Figure 6: Simulated and theoretical envelope 
distributions of real-valued OFDM signal. 
 
Figure 6 shows simulated distribution of a real-
valued OFDM signal with 64 subcarriers, 
oversampling rate ,4=L  and QDPSK. The 
theoretical reference in (16) is plotted also. As it 
shown, envelope distribution is approximated very 
well by the one-sided Gaussian distribution. Its 
CDF thus is 
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 is the error function. 

Thus, the probability that the PAPR of real-valued 

OFDM signal, which is , 
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is below or equal to a given threshold op for N  
subcarriers is given by 
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The probability that the PAPR is above op , is 
given by the CCDF, 
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Figure 7: Theoretical CCDFs of real-valued and 
complex-valued OFDM signals with 64=N . 

 
Figure 7 shows theoretical CCDFs of real-valued 
and complex-valued OFDM signals with 64=N . 
As it is shown Figure 7, the approximation in (11) 
provides inaccurate bound of real-valued OFDM 
signals. Furthermore, it is clear that real-valued 
signals exhibit higher PAPR since their theoretical 
maximum bound is twice that of complex-valued. 
Specifically, the probability that PAPR exceed 12 
dB is 6108 −×  for complex-valued signals, while 
for real-valued signals this probability is 0.004, 
which is much higher. For oversampled real-valued 
OFDM signals, we suggest the same approximation 
approach that used in [9] for complex-valued, i.e. 
the effect of oversampling is approximated by 
adding a certain number larger than one of extra 
independent samples. Therefore, for oversampled 
real-valued OFDM signals, the CCDF can be 
approximated by 
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α
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with α larger than one, its value was determined 
by computer simulation to be 3.5. Figure 8 shows 
simulated CCDFs of real-valued and complex-
valued OFDM signals with 64 subcarriers, 
oversampling rate 4=L , and QDPSK modulation. 
Approximations in (12) and (19) are plotted along 
with the simulated data. 
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Figure 8: Simulated CCDFs of real-valued and complex-
valued OFDM signals with 64 subcarriers, oversampling 
rate 4=L , and QDPSK modulation.  

 

As it shown in Figure 8, simulation results 
demonstrate the accuracy of (19); it is tightly 
bounding the PAPR of real-valued OFDM signals. 
Furthermore, results confirm that real-valued 
signals are generally exhibiting higher PAPR than 
complex-valued signals. Specifically, among 
100000 randomly generated complex-valued 
OFDM symbols, no symbol has a PAPR higher 
than 11 dB, while for real-valued signals, among 
the same number of random symbols, about 8244 
symbols have a PAPR that is higher than 11 dB. An 
interesting observation is that at dB, 7≥op  the 
PAPR of real-valued signals on the average is 
approximately 2 dB higher than that of complex-
valued signals. 
   
 Figure 9 shows simulated and approximated 
CCDFs of real-valued OFDM signals with 
oversampling rate 4=L and QDPSK modulation 
at various numbers of subcarriers. Results depict 
the accuracy of the approximation in (19).  It is also 
observed that at given threshold op , the 
probability that the PAPR exceeds this threshold 
increases as N increases. Specifically, 
at dB 12=op , the CCDF with N = 128 subcarriers 
is 0.03, while with N = 1024, the CCDF is 0.24.   
   
 In general, the PAPR grows as the number of 
subcarriers increases and can be as high as N for 
complex-valued signals and as high as 2N for real-
valued signals, when all subcarriers add coherently, 
which is a theoretical maximum bound with a very 
low likelihood. 
    
So far, we have derived an accurate bound for the 
PAPR distribution of oversampled real-valued 
OFDM signals. This bound (Equation (19)) has no 
closed form since it involves the error function, 
which cannot be determined analytically. 
Therefore, in order to obtain the CCDF of real-
valued OFDM signals, numerical methods should 
be performed. 
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Figure 9: Simulated and approximated CCDFs of real-
valued OFDM signals with oversampling rate 

4=L and QDPSK modulation at various numbers of 
subcarriers N.  



    
   However, since real-valued OFDM signals are 
generally exhibiting high PAPR, a closed-form 
approximation to (19) can be obtained based on the 
asymptotic series expansion of the complementary 
error function erfc, which is related to the erf 
function by the following relation 
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By assuming opx = , and substituting (20) into 
(19) yields 
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For large values of op , the complementary 
error function erfc may be approximated by the 
asymptotic series 
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Since OFDM signals are generally exhibiting high 
PAPR, that is 1>>op , then the first term in (22) is 
dominant and other terms can be neglected. Thus, 
(22) can be approximated in a closed form with a 
very low error as 
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Substituting (23) into (21) leads a closed-form 
approximation to the bound of real-valued OFDM 
signals as 
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   Figure 10 compares CCDF of the PAPR of real-
valued OFDM signals to its closed-form 
approximation at various numbers of subcarriers N.  
As it seen, among all values of  N, the 
approximation error is almost zero. 
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Figure 10: CCDF of the PAPR of real-valued OFDM 
signals and its closed-form approximation at various 
numbers of subcarriers N. 

 

     As mentioned earlier, the PAPR grows as the 
number of subcarriers increases. Thus, it seems that 
PAPR increases approximately linearly with the 
number of subcarriers. Practically, this places a 
tradeoff between PAPR and N in the design of 
OFDM systems. More specifically, in frequency 
selective fading channels that have relatively large 
multipath delays, it is desirable to employ large 
number of subcarriers in order to ensure that each 
subcarrier will experience relatively a flat fade, 
which on the other hand leads to high PAPR.  
 

   In the next section, we investigate the 
relationship between the PAPR and the number of 
subcarriers and see how the PAPR actually grows 
with the number of subcarriers. 
 
 
4. The Relation between PAPR 
and Number of Subcarriers 
Figure 11 shows the CCDF of the PAPR as a 
function of the number of subcarriers N for various 
values of op , it is obvious that for large values of 
N, CCDF is almost constant. Furthermore, at a 
given number of subcarriers N, CCDF decreases as 

op  increases. 
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Figure 11: CCDF of the PAPR as a function of 
number of subcarriers N for various values of op  .  
 

    
From these observations, one can conclude that 
linear relationship between the PAPR and the 
number of subcarriers is true only for small number 
of subcarriers since the likelihood for all or most of 
the subcarriers to add coherently is relatively high. 
As the number of subcarriers increases, this 
likelihood decreases and can be neglected for large 
number of subcarriers. Nevertheless, it is more 
meaning full to address the variation of the PAPR 
with large number of subcarriers.   
 

   The relationship between the number of 
subcarriers N and PAPR can be established by 
recalling (11), since 1<<− ope , the second term in 
the right hand side can be approximated as  
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ρ  can be approximated by the probability of full 
coherent addition. For an M-ary PSK-OFDM 
system, there are NM  unique symbol sequences 
and hence, NM  possible OFDM waveforms per 
OFDM symbol, and at most 2M  patterns that yield 
the theoretical upper bound of PAPR [4]. Thus, 
  

( ) ,1
M

1M
M
M

2
2

2

NN
N

N ≈==≈
−

−−ρ              (26) 

 
Substituting (26) into (25) yields 

 
( )2ln Npo =                                 (27) 

    
Thus, for large number of subcarriers, the PAPR 
grows as a function of )ln( 2N  rather than as of N. 
Figure 12 shows the simulated PAPR as a function 
of the number of subcarriers N, where all 
subcarriers are modulated with QDPSK and 
oversampled by a factor of 4. The simulation was 
performed by randomly generating one complex-
valued OFDM symbol at each N and measuring its 
PAPR, the process was repeated several times to 
average the PAPR. The relationship in (27) is 
plotted along with the simulated data. 
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Figure 12: PAPR of oversampled complex-valued 
OFDM signals as a function of number of subcarriers N. 
   

 
 From simulation results, maximum PAPR was 
found to be around 13 dB, which occurred only in 
one symbols, i.e., with probability equals to 

41022.181921 −×= . The average PAPR is 9.8 dB. 
The variance of PAPR values for 161 ≤≤ N  is 2.9. 
For 819216 ≤≤ N , The PAPR variance is 0.58, 
which means that for small number of subcarriers, 

the PAPR increases considerably with N, while for 
large values of N, the PAPR alternates around 
average value. This is demonstrated by Figure 13, 
which depicts the probability density of PAPR 
values among N.  
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Figure 13: Probability density of PAPR values of 
complex-valued OFDM signals among N. 
 
Regarding the relationship in (27), it is obvious that 
this relationship can be interpreted as an actual 
maximum bound of the PAPR, which leads to the 
conclusion that a tradeoff between PAPR and N 
does not exist actually. 
   A simulation with the same configurations was 
performed using real-valued OFDM signals, the 
results are shown in figure 14. From these results, 
the maximum PAPR was found to be around 14.99 
dB, which occurred only in three symbols, while 
the average PAPR was 12.26 dB. For 161 ≤≤ N  
the PAPR variance is 3.52, while for 

819216 ≤≤ N , The PAPR variance is 0.64. The 
probability density of PAPR values among N is 
depicted in Figure 15. 
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Figure 14: PAPR of oversampled real-valued OFDM 
signals as a function of number of subcarriers N. 
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Figure 15: Probability density of PAPR values of real-
valued OFDM signals among N. 

 
   Comparing results of Figure 14 to those of Figure 
12, leads to two important observations. First, the 
average PAPR of real-valued signals is about 2 dB 
more than that of complex-valued. Therefore, for a 
given PAPR reduction scheme to be adopted for 
real-valued OFDM signals, a margin of 2 dB should 
be inserted. Second, the relationship in (53) now 
describes the actual behavior of PAPR of real-
valued signals, in other words, the PAPR of real-
valued OFDM signals provide an actual maximum 
bound to that of complex-valued.    

 
 

5. Conclusion  
   In section 3 of this paper, accurate PAPR bounds 
for real-valued OFDM signals have been driven. It 
has been demonstrated that the bounds of complex 
valued OFDM signal cannot be used with real-
valued ones. A relation between the PAPR and 
number of subcarrier is established for both real-
valued and complex valued OFDM signals in 
section 4.  
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